The solution to this problem:
Inspect each connector before replacing any electrical components.

Stage 1
If corrosion is just beginning, use sand paper to clean the terminals (pins) this will create a better contact and eliminate problems in the future. A corroded terminal/pin is one of the most frequent causes for melted connectors. This may result in electrical failure of the ignition or charging systems parts.

Stage 2
If the connector is melted or if the corrosion on the terminals is too severe, remove all connectors and terminals and replace them with one of our brand new connector kits (includes male & female connector’s pins). RMSTATOR has made this task easy just use our ratchet crimping tool (Part #RM10002) and high intensity soldering station (Part# RM10003) and one of our connector kits.

Always use high quality dielectric grease that resists to high temperature on all electrical connections to avoid future problems.
VOLTAGE REGULATOR DIAGNOSTIC FLOWCHART

TEST #1
Diode test

TEST #2
Regulator Voltage test

What are the results of the test according to the HOW TO?

Test failed
The tested part needs to be replaced.

Test passed
The tested part works fine.

FUNCTIONAL
The tested part works fine.

DEFECTIVE
The tested part needs to be replaced.

Test #1 - Diode test

Note: If you are testing a MOSFET regulator, pay attention to the MOSFET Notes on the chart below!

Note: This test ONLY verifies if the rectifier function is working. It DOES NOT test the regulation function.

- Set multimeter to **Diode test mode**. Your multimeter MUST have a diode function to perform this test.
- Locate the **Battery +** (Often RED) and **Battery -** (Often BLACK or GREEN) wires on your regulator. If your regulator has a built-in connector, you can identify the terminals by the wire color in the connector.
- Locate the stator wires on your regulator. There are usually three wires, all the same color (often YELLOW or WHITE). If your regulator has a built-in connector, you can identify the terminals by the wire colors in the connector.
- Connect your multimeter per the chart on the back, and write down each measurement.

PASS
Your rectifier is in the acceptable range for each measurement in the chart on the back.

FAIL
Your rectifier fails one or more of the steps in the chart on the back.

Need help? support.rmstator.com or 1-877-838-1399
www.rmstator.com
facebook.com/RMSTATOR
youtube.com/RMSTATOR
VOLTAGE REGULATOR DIAGNOSTIC FLOWCHART

<table>
<thead>
<tr>
<th>Meter RED To Battery +</th>
<th>Specification:</th>
<th>Result:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator Wire 1</td>
<td>‘OL’ or ‘1 .’</td>
<td></td>
</tr>
<tr>
<td>Stator Wire 2</td>
<td>‘OL’ or ‘1 .’</td>
<td></td>
</tr>
<tr>
<td>Stator Wire 3</td>
<td>‘OL’ or ‘1 .’</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meter RED To Battery +</th>
<th>Specification:</th>
<th>MOSFET Specification:</th>
<th>Result:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator Wire 1</td>
<td>0.2-0.8V</td>
<td>0.090-0.110V</td>
<td></td>
</tr>
<tr>
<td>Stator Wire 2</td>
<td>0.2-0.8V</td>
<td>0.090-0.110V</td>
<td></td>
</tr>
<tr>
<td>Stator Wire 3</td>
<td>0.2-0.8V</td>
<td>0.090-0.110V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meter RED To Battery -</th>
<th>Specification:</th>
<th>MOSFET Specification:</th>
<th>Result:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator Wire 1</td>
<td>0.2-0.8V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stator Wire 2</td>
<td>0.2-0.8V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stator Wire 3</td>
<td>0.2-0.8V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test #2 - Regulator Voltage Test

- Set multimeter to DC Voltage setting and the 20 volt range if available. Connect multimeter RED lead to the battery + terminal.
- Connect multimeter BLACK lead to the battery – terminal.
- Note battery voltage with motor off. Battery should measure 12.0-13.0 Volts at rest.
- Start the motor, and let idle (~1000 RPM). Battery voltage should measure 12.0-13.5 Volts.
- Increase motor speed to ~5000 RPM. Battery voltage should measure up to 14.6-14.8 Volts.
- If any of these tests fail, the regulator is faulty and should be replaced.

PASS

Your rectifier is in the acceptable range for each measurement in the chart below.

<table>
<thead>
<tr>
<th>RMP</th>
<th>Battery voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor off</td>
<td>12-13 volts</td>
</tr>
<tr>
<td>1000 RMP</td>
<td>12-13.5 volts</td>
</tr>
<tr>
<td>5000 RMP</td>
<td>14.6-14.8 volts</td>
</tr>
</tbody>
</table>

FAIL

Your rectifier fails one or more of the steps in the chart below.
STATOR

We strongly recommend you perform all three tests below to fully diagnose a stator failure.

TEST #1
Resistance test

What are the results of the test according to the HOW TO?

Test failed
DEFECTIVE
The tested part needs to be replaced.

Next test

TEST #2
Ground test

What are the results of the test according to the HOW TO?

Test failed
DEFECTIVE
The tested part needs to be replaced.

Next test

TEST #3
AC Voltage test

What are the results of the test according to the HOW TO?

Test failed
DEFECTIVE
The tested part needs to be replaced.

Test passed
FUNCTIONAL
The tested part works fine.
Test #1 - Resistance test
- Set multimeter to lowest resistance range available.
- The stator will have three wires of the same color. Take three resistance measurements total, between each pair of two out of the three wires. It does not matter which color meter lead goes to which wire.

PASS
All three measurements are the same (within 0.1 ohms of each other) & are within 0.2-0.9 ohms.

FAIL
One or more measurements are not the same (within 0.1 ohms of each other) & are outside of 0.2-0.9 ohms.

Test #2 - Ground test
- Set multimeter to lowest resistance range available.
- Connect BLACK (Ground or Negative) meter lead to a good unpainted frame ground, or battery negative terminal.
- Connect RED (Positive) meter lead to each of the three stator wires of the same color in turn.

PASS
All three measurements measure ‘OL’ (Open Loop), (1 .), or No Connection. There should be no connection at all between each stator wire and frame ground.

FAIL
One or more measurements measure ANY resistance at all between a stator wire and frame ground.

Test #three - AC Output test
Note: This test can be useful, but is often not accurate depending on your multimeter. Please make sure to perform the Resistance and Ground tests above, as they are much more accurate to determine a stator problem.
- Set multimeter to the AC Voltage range closest to 100VAC.
- The stator will have 3 wires of the same color. Measure the AC Voltage between each pair of 2 out of the 3 wires (3 measurements total). It does not matter which meter lead goes to which stator wire. You will need to perform this test at idle (~1000 RPM) and at ~5000RPM, with the 3-wire stator connector plugged in to the bikes harness/regulator, and unplugged. You can insert the meter leads from the back of the connector to touch the terminals inside.

PASS

<table>
<thead>
<tr>
<th>RPM</th>
<th>STATOR UNPLUGGED</th>
<th>STATOR PLUGGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 RPM</td>
<td>All three measurements are the same (within 3VAC of each other) & between 10-25VAC.</td>
<td>All three measurements are the same (within 3VAC of each other) & between 5-15VAC.</td>
</tr>
<tr>
<td>5000 RPM</td>
<td>All three measurements are the same (within 3VAC of each other) & between 40-70VAC.</td>
<td>All three measurements are the same (within 3VAC of each other) & between 30-60VAC</td>
</tr>
</tbody>
</table>

FAIL
The numbers above are universal and will apply to most stators. If your stator fails one or more of the above tests by a large amount, it most likely is bad. It is most important that the measurements are the same, and close to ranges listed above.
SOURCE COIL DIAGNOSTIC FLOWCHART

TEST #1
Resistance test

TEST #2
Peak Volt test

Test #1 - Resistance test

Note: Before performing Peak Voltage Test, measure source coil resistance and compare to specification.

- Look up resistance specification for your Make/Model/Year. If you are troubleshooting an RMSTATOR product, the specification is available on the product’s page rmstator.com. If you are troubleshooting an OEM part, the specification is available in your factory service manual.
- Set multimeter to nearest resistance range HIGHER than the specification. (example: Specification is 120 ohms, use the meter’s 200 ohm setting. Specification is 300 ohms, use the meter’s 2k ohm setting.)
- Connect multimeter RED & BLACK leads to the two source Coil wires. If there is only 1 wire, connect one meter lead to frame ground. It does not matter which lead goes to which wire.

PASS
Measurement is within +/- 20% of specification resistance.

FAIL
Measurement is NOT within +/- 20% of specification resistance.

Test #2 - Peak Volt Test

- Set your meter on DC volts mode.
- For this test you will need a RMSTATOR Peak Voltage Adapter. (RM22980)
- Plug the adapter into your meter, and your leads to your source coil harness.
- Start your vehicle.
- The voltage needed to either pass or fail the source coil test depends on the year /make / model of your vehicle. It usually is half the resistance of the source coil plus or minus 10v. For example, on a Yamaha Warrior 350 -1995, the source coil is 320 ohms. For that specific model you should get a reading between 150 and 170 volts at cranking speed to charge the CDI Box properly. If it’s less than 150 volts, then the source coil is defective.

SOURCE COIL

Test failed
The tested part needs to be replaced.

Test passed
The tested part works fine.

RM22980
You will need our Peak Volt testing kit available at rmstator.com to perform this diagnostic.
PICK-UP COIL DIAGNOSTIC FLOWCHART

TEST #1
Resistance test

TEST #2
Peak Volt test

Test failed
The tested part needs to be replaced.

Test passed
The tested part works fine.

Test #1 - Resistance test
Note: Before performing Peak Voltage Test, measure pick-up coil resistance and compare to specification.

- Look up resistance specification for your Make/Model/Year. If you are troubleshooting an RMSTATOR product, the specification is available on the product’s page rmstator.com. If you are troubleshooting an OEM part, the specification is available in your factory service manual.
- Set multimeter to nearest resistance range HIGHER than the specification. (example: Specification is 120 ohms, use the meter’s 200 ohm setting. Specification is 300 ohms, use the meter’s 2k ohm setting.
- Connect multimeter RED & BLACK leads to the 2 Pick-Up Coil wires. If there is only 1 wire, connect one meter lead to frame ground. It does not matter which lead goes to which wire.

PASS
Measurement is within +/- 20% of specification resistance.

FAIL
Measurement is NOT within +/- 20% of specification resistance.

Test #2 - Peak Volt Test

- Set your meter on DC volts mode.
- For this test you will need a RMSTATOR Peak Voltage Adapter. (RM22980)
- Plug the adapter into your meter, and your leads to your pick-up coil harness.
- Start your vehicle.

PASS
Measurement is at least four volts.

FAIL
Measurement is less then four volts